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Abstract. A self-consistent tight-binding technique has been employed to calculate the
electronic structures of the Sb– and Sn–Si(111)

√
3 × √

3 surfaces. For the Sn reconstructed
surface, two filled and one unfilled surface states as well as one straddling the Fermi level were
calculated. Three filled and two unfilled surface states were calculated for the Sb reconstructed
surface. These surface state positions are in good agreement with experiments. We have also
calculated the imaginary part of the surface dielectric function,ε2, the surface dielectric function
anisotropy and the corresponding reflectance anisotropy spectra for these reconstructed surfaces.
For comparison we have also calculated the difference between the imaginary parts of the surface
dielectric functions for the Sn–Si(111)

√
3 × √

3 and Si(111)
√

3 × √
3 surfaces.

1. Introduction

Optical techniques probe the details of electronic structure since the response of electronic
states to electromagnetic fields is so directly related to the electronic structure. The response
of a solid to light (i.e. absorption and/or reflection) is measured in terms of the dielectric
function that has a real part (ε1) and an imaginary part (ε2) which are related by the Kramers–
Kronig relations [1]. The imaginary (absorptive) part at each energy depends on the density
of occupied and empty states as well as on the momentum matrix elements [2]. There
are principally two main contributions to the dielectric constant: an electronic and a lattice
contribution. For high frequencies in comparison to the natural vibrational frequencies of
most lattices, which are usually in the infrared region of the electromagnetic spectrum, the
lattice contribution can be neglected. Hence the low-frequency limit here will correspond
to frequencies small compared to characteristic electron excitation frequencies, but still well
above the vibrational frequencies.

The search for more powerful techniques used for probing surface chemistry, structural
and electronic properties has encountered serious limitations because most techniques
involve the use of electrons or ion beams forbidding their use in high-pressure growth
chambers. It has recently been demonstrated that changes in the dielectric function resulting
from an epilayer as thin as one monolayer on a substrate can be measured using ellipsometry
[3]. Reflection anisotropy spectroscopy (RAS) is another optical technique that has been
shown to be useful in the monitoring of growth of semiconductors by MBE and also
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in the high-pressure environment of MOVPE [4, 5]. RAS examines the difference in
reflectivity for light of two orthogonal polarizations incident on the surface. The difference
in reflectivity which is a consequence of the anisotropy of the surface electronic structure
is highly dependent on the surface atomic configuration and chemistry. It has been shown
that the RAS signal depends on the photon energy and can be used to fingerprint particular
surface structures. For example, the GaAs(2 × 4) As-rich reconstructed surface has a
particular identifiable camel-shaped RAS spectrum, whereas the(4×2) Ga-rich surface has
an altogether different shape [6]. It has further been shown that some of the features in the
spectra may be ascribed to the presence of dimers on these surfaces [7]. It is quite clear
then, that information relating to the detailed nature of the surface bonds may be extracted
from the RAS data by correlating them with detailed calculations of the surface states and
corresponding optical response. However, to fully exploit the potential of this technique, it
is important to study a few test systems both experimentally and theoretically. The Si and
GaAs reconstructed surfaces are examples of such systems which have been studied [8–11]
to date. Near-monolayer coverages of Sb and Sn on Si(111) provide another such system
and are the subject of this paper.

Until the advent of angle-resolved and momentum-resolved photoelectron spectroscopy,
the experimental determination of band structures relied principally onε2-measurements. In
atoms and molecules, absorption reflects very directly the differences in energies between
different, sharply defined levels, and the resulting absorption lines can be used directly to
declare ‘term values’ which may be thought of as one-electron energy values for the atoms
and molecules. In solids, the sharp spectral absorption lines are replaced by bands, and
though it is not possible to work back to determine the bands from the spectrum, it is
possible to extract specific energy differences between bands.

The joint density of states (JDOS) is known to provide a useful approximation toε2, but
its assumption of equal momentum matrix elements for all transitions is very simplistic. It
can be shown by symmetry that matrix elements connecting certain wave functions vanish;
e.g. the matrix elements connecting two band states of01 symmetry is zero just as it is for
s states of the free atoms.ε2 is more accurately determined by calculating the momentum
matrix elements explicitly using electronic wave functions. These wave functions can
be obtained by one of numerous self-consistent electronic structure calculation methods.
Techniques which use density functional theory are known to give an error in the calculated
band gap [12] and consequently the position of the electronic surface states may be incorrect.
Although the band-gap error can be easily accounted for, the contribution from the surface
states may be harder to correct.

In this work, the self-consistent tight-binding (SCTB) method in the extended Hückel
approximation has been used to provide a description of the surface electronic structure of
the Sn– and Sb–Si(111)

√
3 × √

3 surfaces. The SCTB is an empirical scheme which takes
into account charge transfer at the surface and provides a good description of the surface
electronic structure. This method has been used before to calculate surface state positions
and to study Fermi level pinning in the As–Si(100)2×1 surface [13] and the NiSi2–Si(111)
interface [14]. The calculated surface state positions in the band gap were in excellent
agreement with experiments.

In section 2 the theory of the calculations is presented and section 3 provides the method
of calculation. In section 4 the results are presented and discussed accordingly. Conclusions
are given in section 5.
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2. Theory of the calculation

Tight-binding methods are increasingly being used to investigate problems in condensed
matter physics. This is no doubt due to the local description of the problem which is
physically appealing and in addition gives deep insight into the nature of the chemical
bonds at or near the surface. In the SCTB technique, the one-electron wave functions are
written in the form [15, 16]

ψi (k, r) = (Bi(k))−1/2
∑
αs

Cαs(k, i)8αs(k, r) (1)

where the Bloch functions8αs(k, r) are taken to be linear combinations of atomic valence
orbitals and are given by

8αs(k, r) = N−1/2
∑

l

exp(−ik · Rls )φα(r − Rls) (2)

whereα = valence orbital type,s = basis atom index,i = band index,N = number of
unit cells in the crystal,Rls = position of atom numbers in the lth unit cell.

The atomic orbital functions,φα(r), are taken to be Slater-type functions with exponents
ηα. Theηα are parametrized to fit the bulk band structures of the different elemental species
[15, 16]. Substituting forψ in the one-electron Schrödinger equation leads to the secular
equation

|Hαs,βt (k) − Ei(k)Sαs,βt (k)| = 0 (3)

whereHαs,βt (k) andSαs,βt (k) are respectively matrix elements of the effective Hamiltonian
and the overlap matrix between the two Bloch functions8αs(k) and 8βt(k). The main
approximation in this technique is that the diagonal matrix elements of the Hamiltonian are
given by the negative of the valence orbital ionization potentialIαs . The off-diagonal
elements are obtained by relatingIαs to the overlap matrix elements involving matrix
elements, namely

Hαs,βt = −0.5Kαβ(Iαs + Iβt )Sαs,βt (4)

where theKαβ are treated as parameters. For off-diagonal matrix elements involving two
different atomic species,s and t , K was taken to be the arithmetic average of those of the
two elements, i.e.12(Ks

αβ + Kt
αβ).

The ionization potentials depend on the charge on the atom and on its electron
configuration; thus the problem is solved self-consistently. These ionization potentials are
given by

Iαs(1qs) = Cαs + Bαs1qs +
∑

t

Rst1qt (5)

where1qs is the excess charge on atoms. Cαs is theα-orbital energy of the neutral atom
in its ground state andBαs is the change in the orbital energy due to deviation from charge
neutrality. Rst is the Coulomb repulsion integral for the charges on different atoms. The
constantsC and B are obtained from ionization potentials of neutral and ionized atoms
which are available in spectroscopic tables [17].

For wavelengths greater than the interatomic spacing, (i.e. the low-frequency limit) the
imaginary part of the dielectric function as obtained from standard perturbation theory [18,
19] is given by

ε2(ω) = 1

π

[
e

mω

]2 ∑
i,j

∫
BZ

[PjiPij δ(Eji − h̄ω) − PijPjiδ(Eji + h̄ω)] dk (6)
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where

Pij (k) = 〈ψi (k)|e · P |ψj (k)〉. (7)

e is a unit vector in the direction of polarization of the light,P is the momentum operator
andEji = Ej(k)−Ei(k). j = unoccupied conduction band index andi = occupied valence
band index. Substituting equations (1) and (2) in (7) gives

Pij (k) = N−1(BiBj )
−1/2

∑
αβ

∑
st

Cv
αsC

c
βt

∑
RlsRmt

exp(−ik · (Rls − Rmt ))T (8)

where

T = 〈φα(r − Rls)|e · P |φβ(r − Rmt)〉 (9)

wherev andc refer to the valence and conduction band states respectively (i.e. transitions
from valence band states to conduction band states). We can writee · P simply asP and
then consider two orthogonal light polarizations. HenceT becomes

T = 〈φα(r − Rls)|P |φβ(r − Rmt)〉. (10)

Sinceφβ andφα are localized (the tight-binding formalism), we can use [18]

P = mi

h̄
[H0, r] (11)

whereH0 is the crystal Hamiltonian, and since we are evaluating

〈φα(r − Rls)|[H0, r]|φβ(r − Rmt)〉
we can add a correction potentialv(r) to H0 such that

H 1
0 |φβ〉 ≡ [H0 + v(r)]|φβ〉 = εβ |φβ〉. (12)

Now if we define

H 2
0 |φα〉 ≡ [H0 + v1(r)]|φα〉 ≡ [H0 + v(r) + 1v(r)]|φα〉 (13)

such thatH 2
0 |φα〉 = εα|φα〉 and if we assume that the matrix elements of1v are small

compared to those ofH 2
0 , we can write

〈φβ |[H0, r]|φα〉 ' (εβ − εα)〈φβ |r|φα〉. (14)

HenceT becomes

T = mi

h̄
[εt

β − εs
α]〈φβ(r − Rmt)|r|φα(r − Rls)〉 (15)

where εt
β and εs

α are the energies of theβ- and α-orbitals on sitest and s after self-
consistency has been achieved.

Assuming that the dipole matrix elements connecting two different atoms can be
neglected [8](this single-centre integral approximation was tested by evaluating the two-
centre integrals and examining their effect on the bulk dielectric function. It was observed
that ε2 was affected only in the high-energy regime, i.e.>6 eV, with an enhancement of the
amplitude), then

〈φβ(r)|r|φα(r − R) = 0 for R 6= 0. (16)

Considering also thatT is non-zero only forεβ 6= εα, thusT becomes

T = mi

h̄
[εs

β − εs
α]

∫
φs

β(r)φs
α(r)r dr. (17)

Hence the momentum matrix elements, equation (7), are given by

Pij (k) = mi

Nh̄
√

BiBj

∑
αβ

∑
s

[εs
β − εs

α]Cv
αs(k)Cc∗

βs(k)

∫
φs

β(r)φs
α(r)r dr. (18)

ε2 was calculated as given by equation (6) using the above expression forPij (k).
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3. The method of calculation

The Sn–Si(111)
√

3 × √
3 surface corresponds to 1/3 monolayer (ML) coverage [8, 20,

21] (1 ML is defined as the number of atoms of the ideal substrate, being 7.83 × 1014

atoms cm−2 for the Si(111) substrate) with Sn residing at the T4 sites [22]. The surface
atomic positions used were those obtained from surface x-ray diffraction by Conwayet al
[22]. Photoelectron diffraction [23] and both scanning tunnelling microscopy (STM) and
first-principles calculation [24] have confirmed a

√
3×√

3 geometry for this coverage with
Sb atoms forming trimers on the Sb–Si(111) surface. This corresponds to a full monolayer
coverage with the Sb atoms residing near the atop (T1) sites and bonding directly with a
silicon atom beneath the surface and each of the two remaining Sb atoms in the trimer
whose centre is at the T4 site [24]. Thus three out of the five valence electrons of each
Sb atom participate in the formation of covalent bonds. The other two occupy lone-pair
orbitals which protrude out of the surface.

Table 1. Parameters used to calculate the surface electronic structures. The symbols are given
in the text.

Parameter Si Sb Sn

ηs 1.90 2.44 2.31
ηp 1.41 2.00 1.80
Cs 14.95 14.52 14.23
Cp 7.77 8.44 7.01
Bs 12.39 10.45 8.89
Bp 10.13 7.60 7.27
Kss 1.75 2.0 1.52
Kpp 1.75 1.52 1.80
Ksp 1.46 1.78 1.33

The Slater exponents,ηα, and the constants relating to the overlap matrix of the
Hamiltonian, Kαβ , were parametrized and fitted to the bulk band structures obtained
by Chelikowsky and Cohen [25] using non-local pseudopotentials. Table 1 shows the
parameters for Sn and Si obtained from the fitting. Also shown are the parameters for Sb
which were obtained from Whittleet al [26]. Once this fitting process was completed for
the bulk materials, the subsequent parameters were used in the calculation of the electronic
structure of the Sb– and Sn–Si(111)

√
3 × √

3 surfaces.
Both surfaces were modelled using a periodically repeating slab geometry. For the Sn

surface, half of the unit cell consisted of eight silicon layers each containing three atoms,
a tin layer with only one atom and three empty (vacuum) layers. These vacuum layers
were found to be sufficient to avoid surface interactions. Half of the slab for the Sb surface
consisted of eight silicon layers each containing three atoms, an antimony layer with three
atoms (trimer atoms) and three vacuum layers.

The imaginary surface dielectric function,εs
2, was then calculated using the expression

εs
2 = (ε110

2 + ε112
2 )/2 (19)

whereε110
2 and ε112

2 refer to the components ofεs
2 in the [110] and [1̄12] directions. The

surface dielectric anisotropy is given by

1εs
2 = (ε110

2 − ε112
2 )/2 (20)
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Figure 1. The total and local density of states (DOS) for the Sn–Si(111)
√

3×√
3 slab. Surface

states are labelled A, B, C and D.

and can be related to the experimentally measured deflection anisotropy. This is achieved by
first performing a Kramers–Kronig transform to give the real part of the dielectric function,
ε1, from the knowledge ofε2. The complex dielectric function is related to the real and
imaginary parts of the refractive index,n andk respectively, through the relation

√
ε = n + ik ε = ε1 + iε2. (21)

The reflectance at normal incidence is defined as

r = (n − 1)2 + k2

(n + 1)2 + k2
(22)

and the reflectance anisotropy is then given by

1r

r
= 2(r110 − r112)

(r110 + r112)
. (23)

Aspneset al [27, 28] have shown that the features in the experimentally derived dielectric
anisotropy and RAS spectra are virtually the same. This is expected as analysis of the linear
response within a three-phase model yields the result

1r

r
∝ (ε110

2 − ε112
2 ). (24)

For both the electronic density of states and the optical response calculations, the Brillouin
zone integration was performed using the tetrahedron method [29]. In this method the
irreducible zone is divided into parallelepipeds and is further reduced into six tetrahedra.
The contribution to the matrix element from each tetrahedron was evaluated using the
Skriver method [29]. Twelvek-points obtained from symmetry considerations were used
for the reciprocal-space integration for both surface calculations.
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Figure 2. The total and local density of states (DOS) for the Sb–Si(111)
√

3×√
3 slab. Surface

states are labelled a, b, c, d and e.

4. Results and discussion

Figure 1 shows the calculated total (T), and local (L) density of states (DOS) for the top
three layers as well as one of the bulk-like layers for the Sn reconstructed surface. The main
surface states labelled A, B and C occur at the Fermi energy,Ef (i.e. 0 eV), at 1.1 eV and
1.9 eV belowEf respectively. These states were identified as surface states after detailed
examination of the coefficients of the wave functions. The greatest contributions to these
states were from the surface atoms. These energy positions for surface states are in very
good agreement with the angle-resolved ultra-violet photoelectron spectroscopy (ARUPS)
study of Kinoshitaet al [30]. In their study they denoted these states S1, S2 and S3
respectively. We have also identified an unfilled surface state labelled D which occurs at
approximately 1.4 eV aboveEf .

Figure 2 shows the calculated TDOS and LDOS for the top three layers as well as
one of the bulk-like layers for the Sb reconstructed surface. We can immediately identify
unfilled surface states labelled d and e at energies 0.4 eV and 1.4 eV aboveEf . These
are very localized at the surface. These states correspond to theY - andZ-states observed
by Kinoshita et al [31] in their momentum-resolved inverse photoemission spectroscopy
(KRIPS) study. We have also calculated three other surface states labelled a, b and c. States
b and c occur at between 2.0 and 1.3 eV belowEf . These states were observed and denoted
A1 andA2 by Kinoshitaet al [30] in their ARUPS study. These states are associated with
the lone pairs on the Sb atoms in the trimer model [24]. The filled surface state observed
and denotedx by Kinoshita et al [31] at about 2.8 eV were not predicted; however, we
have identified another deep-lying filled surface state, denoted a, at approximately 5.4 eV
below Ef . This state originates on the Sb layer and decays into the bulk of the slab.
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Figure 3. The imaginary part of the dielectric function (IDF),ε2, for the Sn–Si(111)
√

3 × √
3

surface.

The good agreement between the calculated surface states and experimental findings
prompted the investigation of optical properties of these reconstructed surfaces. In order
to gain confidence in our calculations, the imaginary part of the dielectric function as well
as the JDOS of bulk silicon were calculated. The JDOS was found to closely resembleε2.
This resemblance is because for bulk, the momentum matrix elements for all transitions are
almost equal as assumed in the JDOS approximation. The calculatedε2 agrees reasonably
well with experiments [11] and other calculations [32–34] only in the low-energy regime,
(i.e. <6 eV), because of the on-site approximation made in equation (16) (i.e. the neglect
of near-neighbour interactions). Since we are only interested in the low energies, for large
(surface) calculations, the two-centre integrals were neglected.

Figure 3 showsε2 for the Sn reconstructed surface. In addition to the bulk features,
there is a peak at 1.4 eV and a broad feature between 2.5 eV and 3.0 eV which are associated
with transitions from surface states labelled A and B to the state labelled D respectively.
It was noted that unlike the case for the bulk calculation, the momentum matrix elements
for the surface state to surface state transitions were considerably larger than those for
other transitions for energies below 3 eV. The JDOS (not shown) confirmed this because
the features below 3 eV were almost suppressed. The calculated anisotropy in the surface
dielectric function,ε110

2 −ε112
2 , plotted against energy is shown in figure 4(a). The reflectance

anisotropy (i.e. RAS) spectrum calculated from equations (22) and (23) is shown in figure
4(b). As may be observed, the energies of the features in the dielectric anisotropy are the
same as those for the RAS. The main features of the spectrum are found to occur between
1.0 eV and 4.5 eV, and from an analysis of the various matrix elements, contributions can
be attributed to transitions from occupied to unoccupied surface states arising from silicon
atoms in the layer below the surface. Surprisingly although these atoms suffer very small
displacements of order 0.01̊A from their equilibrium positions, they appear to make a
significant contribution to the RAS signal. In order to calculate the effect of Sn on the√

3 × √
3 surface, theε2-spectrum for silicon adatoms on the Si(111)

√
3 × √

3 surface
was calculated after obtaining its electronic structure in the same manner as in [35]. The
Si(111)

√
3 × √

3 surface is similar to the Sn surface except for the fact that the Si adatom
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Figure 4. (a) The anisotropy in the imaginary part of the surface dielectric function (AIDF) for
the Sn–Si(111)

√
3 × √

3 surface as a function of energy. The two orthogonal polarizations
considered are along the [110] and [11̄2] directions. (b) The RAS spectrum for the Sn–
Si(111)

√
3 × √

3 surface.

is replaced by a Sn adatom and of course both surfaces have different relaxations. Thus
these surfaces are directly comparable. The difference between theε2-spectra in shown in
figure 5. The main difference peak occurs at about 1.3 eV. The prediction of differences in
ε2 can only be confirmed by ellipsometric measurements.

Figure 6 shows theε2-spectrum as calculated for the Sb reconstructed surface. Two
peaks occur at 1.6 eV and 2.1 eV in addition to the bulk features. These correspond to
transitions from states labelled b and c in figure 2 to states labelled d and e. These features
were barely resolved in the JDOS as in the case of Sn. It should be noted that because the
calculations presented here were performed employing a slab configuration, the effect of
the adlayers on the substrate would be exaggerated when compared with experiments.

Figure 7(a) showsε110
2 − ε112

2 plotted against energy as calculated for the Sb–
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Figure 5. The calculated difference between theε2 for the Sn–Si(111)
√

3 × √
3 and Sb–

Si(111)
√

3 × √
3 surfaces.

Figure 6. The imaginary part of the dielectric function (IDF),ε2, for the Sb–Si(111)
√

3 × √
3

surface.

Si(111)
√

3 × √
3 surface. Also shown in figure 7(b) is the RAS spectrum for this surface.

The main features of the two spectra occur at roughly the same energies affirming the
fact that dielectric and reflectance anisotropies are closely related. Producing anε2-
difference spectrum for Sb and Si reconstructed surfaces was not directly possible because
the surface atomic density for the Sb–Si(111)

√
3× √

3 surface is different from that of the
Si(111)

√
3 × √

3 surface and also because the atom positions are very different (i.e. near
T1 sites for Sb adatoms and near a T4 site for a Si adatom).

In performing these calculations we have also ignored transitions from surface states
very close to the Fermi level. Thus even for the Sn surface where there is a high density
of states at the Fermi energy,ε2 has almost zero intensity below 1.0 eV.
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Figure 7. (a) The anisotropy in the imaginary part of the surface dielectric function (AIDF) for
the Sb–Si(111)

√
3 × √

3 surface as a function of energy. The two orthogonal polarizations
considered are along the [110] and [11̄2] directions. (b) The RAS spectrum for the Sb–
Si(111)

√
3 × √

3 surface.

5. Conclusions

The SCTB technique has been used to calculate the electronic structure of the Sb– and Sn–
Si(111)

√
3 × √

3 reconstructed surfaces. The surface state energies are in good agreement
with experimental findings. We have also calculated the imaginary part of the surface
dielectric function for these surfaces using momentum matrix elements obtained from the
electronic wave functions. The anisotropy of the surface dielectric functions have been
calculated and compared with the RAS spectra for both surfaces. These calculated optical
spectra show correlation with the detailed electronic structure, which in turn depends on the
atomic configuration at the surface, and hence provide a useful tool in the study of surface
structures. RAS and ellipsometry measurements for these surfaces are needed to provide a
better understanding of the physics at these surfaces.
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